
Maxence Larose
Candidat à la maîtrise
Faculté des sciences et de génie
Université Laval
Le cancer de la prostate est le deuxième cancer le plus fréquent et la cinquième cause de décès par cancer chez les hommes. Pour améliorer les résultats de santé des patients, le traitement doit être personnalisé en se basant sur un pronostic précis. Il existe déjà des nomogrammes permettant d’identifier les patients à faible risque de récidive sur la base d’informations cliniques préopératoires, mais ces outils n’utilisent pas les images médicales des patients.
L’objectif de ce projet est d’utiliser l’apprentissage profond pour développer un modèle combinant les images FDGPET/ CT et les données cliniques des patients afin d’améliorer le pronostic prétraitement du cancer de la prostate de haut grade. Ce modèle doit être performant, mais aussi interprétable afin de permettre à un expert de comprendre les probabilités données.
France Légaré chevalière de l’Ordre national du Québec
Lire plus
Cécile Capponi
Université Aix-Marseille
La classification supervisée permet de construire des modèles prédictifs basés sur des données complexes pour aider aux processus de décision. Elle a subi un essor impressionnant ces dernières années, notamment grâce aux réseaux de neurones et à l'utilisation de données massives. Cependant, les méthodes mise au point dans ce cadre ne permettent pas de prendre en considération des bases de données dans lesquelles seules quelques instances sont disponibles pour construire le modèle, et encore moins quand ces instances sont décrites par un grand nombre de caractéristiques.
En imagerie médicale, les caractéristiques radiomiques permettent de caractériser l'hétérogénéité d'une région d'intérêt au niveau anatomique. Cette façon de quantifier l'hétérogénéité d'une région d'intérêt peut être utile, par exemple, afin d'identifier les tumeurs les plus agressives en oncologie. Pour ce faire, nous posons ici l'hypothèse que la variation des séquences d'acquisition d'imagerie par résonance magnétique (IRM) et ses différents niveaux de contraste qui en découlent permettrait d'optimiser l'analyse radiomique subséquente.

Patrick Archambault
Faculté de médecine
Université Laval
L’intelligence artificielle en santé : de la définition aux enjeux éthiques et juridiques
En savoir plus
La Communauté de pratique Accès aux Données
Découvrir

Projet en vedette
Le délirium est un état qui, lorsqu'il n'est pas pris en charge, est associé à une augmentation de la mortalité et à une hospitalisation plus longue des patient.e.s en soins intensifs; son dépistage devrait donc faire partie intégrante des soins. Il se caractérise par la confusion, l’anxiété et une vigilance réduite. Il est estimé que 75% des cas de délirium ne sont pas détectés à l'admission à l'hôpital. En effet, la détection d'un tel état aigu nécessite un suivi fréquent des participant.e.s, ce qui demande beaucoup de travail et d'expertise.