Étudiant.e
Directeur.e(s) de recherche
Jacques Corbeil
Co-researcher
Cécile Capponi
Début du projet
Titre du projet de recherche
Apprentissage automatique supervisé multi-vues pour la résolution de problèmes multi-omiques
Description

La classification supervisée permet de construire des modèles prédictifs basés sur des données complexes pour aider aux processus de décision. Elle a subi un essor impressionnant ces dernières années, notamment grâce aux réseaux de neurones et à l'utilisation de données massives. Cependant, les méthodes mise au point dans ce cadre ne permettent pas de prendre en considération des bases de données dans lesquelles seules quelques instances sont disponibles pour construire le modèle, et encore moins quand ces instances sont décrites par un grand nombre de caractéristiques. Ce type de problème, appelé en anglais "fat data", en opposition aux "big data", est récurrent dans le domaine de la médecine, où l'extraction de données sur un patient a un coût très élevé, mais fourni une grande quantité d'information. De plus dans le domaine médical, il est fréquent d'avoir plusieurs types d'analyses réalisées sur le même patient : génomique, métabolomique, transcriptomique, etc. Ce type de bases de données est appelé multi-omique.

Le but de ce projet est donc d'utiliser et de mettre au point des algorithmes de classification multi-vues pertinents pour le traitement de données multi-omiques "fat". 

Découvrir

Projet en vedette

Le cancer de la prostate est le deuxième cancer le plus fréquent et la cinquième cause de décès par cancer chez les hommes. Pour améliorer les résultats de santé des patients, le traitement doit être personnalisé en se basant sur un pronostic précis. Il existe déjà des nomogrammes permettant d’identifier les patients à faible risque de récidive sur la base d’informations cliniques préopératoires, mais ces outils n’utilisent pas les images médicales des patients.

Lire plus