Recent breakthroughs in medicine have shown a link between cerebrovascular pathologies and the risk of developing mild or major cognitive disorders of the like of Alzheimer’s disease (AD). The project will thus consist in developing a tool for the characterisation of the cerebrovascular system.
Indeed, the measurement of arteries and veins (diameter, density, etc.) in every brain region will
Rémi Lamontagne-Caron
M.Sc. candidate
Faculté de médecine
Université Laval
Recent breakthroughs in medicine have shown a link between cerebrovascular pathologies and the risk of developing mild or major cognitive disorders of the like of Alzheimer’s disease (AD). The project will thus consist in developing a tool for the characterisation of the cerebrovascular system.
Indeed, the measurement of arteries and veins (diameter, density, etc.) in every brain region will
provide a better understanding of the vascular health changes throughout the aging process and if these changes are linked to two markers heavily correlated with neurocognitive disorders: cerebral tissue atrophy and cerebrovascular lesions (mainly hyperintensities in white matter and cerebral microbleeds). Thus, the cerebrovascular system for cognitively healthy participants, patients with mild cognitive disorder and patients with AD will be characterized to better our understanding of cognitive health’s link with cerebrovascular health.
To summarize, the project is an exploration of the relation between the cerebrovascular system and the AD in order to comprehend the interactions involved and help with the diagnosis of the disease.
Sandrine Blais-Deschênes
M.Sc. candidate
Faculté des sciences et de génie
Université Laval
Interpretability of Artificial Intelligence, that is the capacity of an expert to understand why a prediction is made, is of great importance in health analysis. Firstly, because it matters to understand why a decision is made by an algorithm when it has such impact on a person’s life. Moreover, in research, interpretable algorithms are useful because they often unveil new investigation path.
This study aims to combine two supervised machine learning algorithms to optimize both interpretability and performance, for instance, with mathematical logic tools. This new algorithm intends to help better predictions by lightly increasing model complexity while preserving high interpretability.
This algorithm is developed to analyze fat data, which are data with a lot of characteristics (features) but with few samples (observations). This type of data is recurrent in health data, mainly in genomics, metagenomics and metabolomics data, which are all state of the art in medical analysis. More precisely, we are interested in problems such as antibiotic resistance or long corona virus disease (COVID-19).
Interpretability of Artificial Intelligence, that is the capacity of an expert to understand why a prediction is made, is of great importance in health analysis. Firstly, because it matters to understand why a decision is made by an algorithm when it has such impact on a person’s life. Moreover, in research, interpretable algorithms are useful because they often unveil new investigation path.
Digital transformation: transparency and personal information protection issues
Know moreEthics + EDI in Digital Intelligence
Know moreA discussion on Artificial Intelligence in Health
Know moreRadiotherapy treatments currently used in the clinical field are rarely modified. They generally consist of a global therapy of 50 grays, fractionated in five treatments of two grays every week for five weeks.
Thus, it could be worthwhile to develop a numeric tool, based on mathematical models found in the literature, in order to compare different types of treatment without having to test them on real tissues. Several parameters are known to alter the tissue response after irradiation including oxygen
The first objective of the project is to design efficient convolutional network classification models (CNNs) using mass spectrometry data (1D and 2D) for clinical diagnosis (cancer and infection).
Once finalized, the second objective is the interpretation of these classification models in order to identify spectral regions of interest that may correspond to new diagnosis or therapeutic biomarkers.
Oumaima Ouffy
M.Sc. candidate
Faculté des sciences et de génie
Université Laval
Il est souvent difficile de partager des données dénominalisées entre différentes organisations et chercheurs en raison de contraintes éthiques liées à la confidentialité des répondants. Il peut ainsi s’écouler de longs mois, parfois même des années, entre la rédaction d’un projet de recherche et le début de l’analyse planifiée, ce qui limite la capacité des chercheurs à mener des travaux scientifiques de pointe au moment opportun et contribue à allonger inutilement la formation d’étudiants gradués, entre autres problèmes. Une solution possible est de créer un jeu de données synthétiques à partager aux chercheurs en attente de l’accès au jeu de données original. Ce jeu de données synthétique serait représentatif des données originales, mais créé de façon à ne pas révéler d’information confidentielle sur les répondants. Il permettrait aux chercheurs de se familiariser à l’avance avec les variables mesurées, d’anticiper les difficultés techniques du projet de recherche (stockage, logiciels, gestion des accès), et de planifier de meilleurs protocoles de recherche.
Nous étudions ici les enjeux techniques liés à la création de tels jeux de données synthétiques dans le domaine de la santé. Il faut notamment s’assurer que les modèles statistiques utilisés soient assez flexibles pour bien modéliser les corrélations entre les variables collectées, tout en s’assurant de ne pas sur-ajuster ceux-ci, ce qui pourrait nuire à la protection de la confidentialité. Le travail s’articulera autour de la création d’un jeu synthétique pour un sous-ensemble des données collectées par le Consortium d’identification précoce de la maladie d’Alzheimer - Québec (CIMA-Q), pour qui le partage des données à la communauté de recherche sur la maladie d’Alzheimer canadienne et internationale est un objectif important.
Discover
Featured project
Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer death among men. To improve patient outcomes, treatment must be personalized based on accurate prognosis. Nomograms already exist to identify patients at low risk for recurrence based on preoperative clinical information, but these tools do not use patients’ medical images.