Treatment of cancer with radiation is a proven technique used worldwide. One of the ways to treat prostate cancer is by using brachytherapy either alone or as a boost. At the moment, the techniques used depend on the experience of the treatment team and researchers are trying to overcome this problem.
In our case, the technology considered to address this problem is deep learning. Therefore, the aim of this project is to use deep learning to develop tools for planning in high dose rate brachytherapy for the treatment of prostate cancer.
It is often difficult to share denominated data between different organisations and researchers due to ethical constraints related to respondent's confidentiality. This is a frequent reality in healthcare, given the inherent sensitivity of the data involved. One option in this case is to not share the data directly, but rather to provide access to it via a tool that controls the risk of disclosure of the queries made and allows only those it considers safe.
NRC Responsible Data Speakers' Series, Theme 1
Know moreSynthetic Data for Health Symposium
Know more100 days of Data.Trek
Know moreMamadou Mbodj
M.Sc. candidate
Faculté des sciences et de génie
Université Laval
It is often difficult to share denominated data between different organisations and researchers due to ethical constraints related to respondent's confidentiality. This is a frequent reality in healthcare, given the inherent sensitivity of the data involved. One option in this case is to not share the data directly, but rather to provide access to it via a tool that controls the risk of disclosure of the queries made and allows only those it considers safe. DataSHIELD is such a tool that has been proposed to protect the confidentiality of a dataset, and which is used via the statistical software R. It also allows statistical analyses to be carried out on several datasets hosted in different locations, always ensuring the confidentiality of the respondents. In this project, we are interested in the confidentiality guarantees provided by the software, and in its limitations. In particular, we study the potential uses of the software for advanced statistical analyses, such meta-analyses and the use of neural networks.
Philippe Chatigny
Ph.D. candidate
Faculté des sciences et de génie
Université Laval
Treatment of cancer with radiation is a proven technique used worldwide. One of the ways to treat prostate cancer is by using brachytherapy either alone or as a boost. At the moment, the techniques used depend on the experience of the treatment team and researchers are trying to overcome this problem.
In our case, the technology considered to address this problem is deep learning. Therefore, the aim of this project is to use deep learning to develop tools for planning in high dose rate brachytherapy for the treatment of prostate cancer.
Four different phases are initially targeted. The first consists of a classification of treatment plans. The second is a “reinforce learning” approach to help optimize treatment plans, by modifying the optimization objectives in order to consider each patient in a unique way. The third is dose map prediction based on patient anatomy. The fourth is the generation of treatment plans; from the patient's anatomy or from a dose map to find an adequate treatment plan.
The proposed work is a new approach that will ultimately help with the planning of high dose rate brachytherapy treatments for prostate cancer.
Discover
Featured project
Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer death among men. To improve patient outcomes, treatment must be personalized based on accurate prognosis. Nomograms already exist to identify patients at low risk for recurrence based on preoperative clinical information, but these tools do not use patients’ medical images.