• Philippe Després

    Professor
    Faculté des sciences et de génie
    Université Laval

    Philippe Després is a full professor in the Department of Physics, Engineering Physics and Optics and member of the Cancer Research Center of Université Laval, medical physicist at CHU de Québec and a regular researcher at its affiliated Research Center, membrer of the Institute intelligence and data of Université Laval and member of the Researcher Council of the New Digital Research Infrastructure Organization (NDRIO). He is the designated principal investigator of the RHHDS program.

    He was trained at Université Laval (MSc 2000, Physics), Université de Montréal (PhD 2005, Physics) and University of California, San Francisco (postdoc 2005-2007, Biomedical Engineering, Molecular Imaging). 

    Professor Philippe Després is involved in several projects encompassing hardware and software aspects of medical imaging modalities, notably low-dose X-ray imaging, advanced imaging techniques, and solid-state detectors for molecular imaging. He pioneered high-performance computing (HPC) approaches with commodity graphics hardware (GPUs) that led to innovative applications in image processing/reconstruction and radiation dose calculations, including a fast GPU-based Monte Carlo engine to simulate energy transport in matter (GPUMCD).

    As a HPC expert, professor Philippe Després is also involved in data-driven research approaches, data infrastructures and FAIR-compliant research data management. In this regard, he is responsible of biomedical data at CHU de Québec of Université Laval Research Center, the data architect of the PULSAR health research platform, the assistant director of the Big Data Research Center at Université Laval, and the co-lead of the sustainable health axis of the Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique (OBVIA). 

  • The Terry Fox Research Institute



  • Discover

    Featured project

    The aim of this doctoral thesis is to develop a tool able to automatically provide organs of interest segmentation in computed tomography images using machine learning techniques.

    Read more