Titre du projet de recherche
Simulation des dommages directs et indirects à l'ADN induits par les neutrons incluant les mécanismes de réparation
Description

Le risque associé aux effets stochastiques du rayonnement neutronique est connu pour être dépendant de l'énergie. Au cours de la dernière décennie, plusieurs études ont utilisé des simulations de Monte Carlo pour estimer l'efficacité biologique relative (EBR) des neutrons pour divers types de dommages causés à l'ADN afin de comprendre sa dépendance énergétique fondamentale. Cependant, aucune de ces études n'inclus la simulation de la réparation de l'ADN dans leurs protocoles.

Titre du projet de recherche
Critères de sélection des algorithmes d'appariement basés sur l'IA pour OncoBuddy/OncoConseil
Description

Les patient.e.s atteints de cancer vivent beaucoup d'événements pendant leur traitement. Malgré le soutien de la famille et des amis, ceux-ci ne comprennent pas entièrement la réalité des patient.e.s. Le soutien d'autres patient.e.s ayant vécu une expérience similaire pourrait donc être bénéfique pour de nombreux patient.e.s atteints de cancer.

Titre du projet de recherche
Développement d'une application web autonome pour explorer des algorithmes d'appariement et évaluer leurs avantages et inconvénients
Description

L'expérience du cancer et l'incertitude qui l'entoure est anxiogène. Le soutien par les pairs est un moyen de réduire l'incertitude non clinique de cette expérience. Le groupe informatique Opal Santé cherche à évaluer l'efficacité d'un algorithme d'appariement de soutien par les pairs basé sur l'intelligence artificielle (IA) et incorporé dans le portail patient Opal. Ceci dans l'espoir de faciliter les programmes de soutien par les pairs pour les patient.e.s atteints de cancer ainsi que leurs aidants au Québec.

  • Cynthia Garcia Ybarra

    Candidate à la maîtrise
    Faculté des sciences et de génie
    Université Laval

    Étudiant.e
    Directeur.e(s) de recherche
    Christian Gagné
    Co-researcher
    Anne-Sophie Charest
    Début du projet
    Titre du projet de recherche
    Génération de données synthétiques préservant la confidentialité à partir de bases de données administratives sur les soins de santé
    Description

    Les ensembles de données de santé synthétiques sont utiles pour soutenir le développement de techniques d'analyse de données et d'apprentissage automatique dans le domaine de la santé, en offrant un accès à des données représentatives pour expérimenter et générer des modèles, tout en atténuant les problèmes associés au traitement de données hautement sensibles liées à des sujets humains. Cependant, la performance et l'utilité des méthodes d'analyse de données et d'apprentissage automatique appliquées dépendent de la qualité de ces ensembles de données synthétiques et de leur représentativité du phénomène à modéliser.

    L'objectif du projet est de développer des méthodes d'apprentissage automatique pour générer des ensembles de données synthétiques sur les soins de santé qui préservent la distribution et la temporalité des ensembles de données administratives réelles de soins de santé tout en garantissant que la confidentialité des informations sensibles sur les personnes trouvées dans l'ensemble de données réel est préservée. Cela signifie qu'il faut avoir certaines garanties que la capacité d'identifier des personnes réelles à partir de l'ensemble de données original est impossible ou très improbable, et que les attributs des enregistrements réels (par exemple, historique des soins de santé d’individus) ne peuvent pas être déduits de l'ensemble de données synthétiques.

    En fonction des garanties que nous pouvons obtenir pour assurer la confidentialité des données médicales ouvertes réelles utilisées pour générer les ensembles de données synthétiques, il serait envisagé de produire des versions synthétiques d’ensembles de données de la RAMQ, et même de les divulguer plus ouvertement à des fins de recherche et d'analyse si cela est jugé acceptable.

  • Titre du projet de recherche
    Apprentissage automatique sur TDM cérébraux sans contraste afin de prédire les revisites aux urgences pour AVC
    Description

    La prédiction et l'identification précoce d'accidents vasculaires cérébraux (AVC) sont cruciales afin de prévenir les revisites aux urgences et de débuter le traitement, réduisant ainsi la morbidité et la mortalité.

    Titre du projet de recherche
    Développement d’un outil de pronostic automatique combinant images et données cliniques pour le cancer de la prostate de haut grade
    Description

    Le cancer de la prostate est le deuxième cancer le plus fréquent et la cinquième cause de décès par cancer chez les hommes. Pour améliorer les résultats de santé des patients, le traitement doit être personnalisé en se basant sur un pronostic précis. Il existe déjà des nomogrammes permettant d’identifier les patients à faible risque de récidive sur la base d’informations cliniques préopératoires, mais ces outils n’utilisent pas les images médicales des patients.

    Découvrir

    Projet en vedette

    Le cancer de la prostate est le deuxième cancer le plus fréquent et la cinquième cause de décès par cancer chez les hommes. Pour améliorer les résultats de santé des patients, le traitement doit être personnalisé en se basant sur un pronostic précis. Il existe déjà des nomogrammes permettant d’identifier les patients à faible risque de récidive sur la base d’informations cliniques préopératoires, mais ces outils n’utilisent pas les images médicales des patients.

    Lire plus