Directeur.e(s) de recherche
John Kildea
Start date
Title of the research project
Simulating direct and indirect neutron-induced DNA damage with repair mechanisms
Description

The risk associated with the stochastic effects of neutron radiation is known to be strongly energy dependent. Over the past decade, several studies have used Monte Carlo simulations to estimate the relative biological effectiveness (RBE) of neutrons for various types of DNA damage in order to understand its energy dependence at the fundamental level. However, none of these studies implemented DNA repair simulations in their pipeline.

In this project, we investigated the effects of adding repair mechanisms to Monte Carlo-based RBE estimates of DNA damage by neutrons. Our group had previously carried out condensed history (CH) simulations to profile the energy spectrum and relative dose contribution of the secondary particles produced by neutron interactions in tissue. In this project, we use the results of our CH simulations to simulate the irradiation of TOPAS-nBio’s DNA model by a flat spectrum of neutrons ranging from 1 eV to 10 MeV, as well as reference X-rays at 250 keV. Induced DNA damage are recorded using the standard DNA damage data (SDD) format abd DNA repair are simulated using the DNA Mechanistic Repair Simulator (DaMaRiS) framework.

Discover

Featured project

This research project is based on the analysis of massive data on the NOL index and other intraoperative clinical parameters used by anesthesiologists during surgery. These parameters help them make analgesic treatment decisions in a non-communicating patient under general anesthesia and in whom it is impossible to assess pain and analgesic needs by standard questionnaires performed on awake patients. 
First, the objective is to interpret the values of this index in relation to the decisions made by the clinician. 

Read more