Projets en cours

Directeur.e(s) de recherche
Jacques Corbeil
Pascal Germain
Elsa Rousseau
Début du projet
Titre du projet de recherche
Développement d’une technologie de contrôle de la qualité des plantes en cours du procédé manufacturier de médicaments en utilisant la spectrométrie de masse à haut débit couplée à des approches en apprentissage automatique
Description
Description

L'efficacité et la robustesse du procédé manufacturier sont essentielles pour assurer la productivité et la prévisibilité dans la fabrication pharmaceutique. La technologie de fabrication de vaccins de Medicago utilise des plantes pour la production et notre objectif est de développer un système capable de prévoir et de contrôler l’aptitude des plantes à la production, et ce, tôt dans le processus, de l’ensemencement à la récolte des feuilles productrices.

À cette fin, nous devons identifier les facteurs qui régulent le niveau de production de chaque plante. Nous prévoyons mesurer un grand nombre de molécules, appelées métabolites, afin de déterminer les conditions optimales permettant à la plante de générer la quantité maximale de chaque produit. La quantité de mesures étant importante, nous utiliserons l’apprentissage automatique pour concevoir une intelligence artificielle capable de comprendre et d’identifier les schémas potentiellement très complexes de métabolites et/ou des caractéristiques corrélées à une productivité optimale.

Étudiant.e
Directeur.e(s) de recherche
Philippe Després
Collaboration
Régie de l'assurance maladie du Québec
Début du projet
Titre du projet de recherche
Développement d’un outil d’aide à la prise de décision permettant l’approbation de médicaments d’exception basé sur des algorithmes d’apprentissage supervisé
Description
Description

Un médicament d’exception est un médicament qui n’est habituellement pas couvert par le régime public d’assurance-médicaments (RPAM). Les mesures mises en place à la RAMQ pour les médicaments d’exception permettent à l’ensemble de la population d’obtenir la couverture de certains médicaments si ces derniers sont utilisés dans le respect des indications reconnues par l’Institut national d'excellence en santé et services sociaux (INESSS). Les médicaments d'exception constituent aujourd'hui une part importante et en constante augmentation des dépenses totales en médicaments d’ordonnance.

Pour le RPAM, l’un des moyens de contrôler cette hausse est de rembourser ces médicaments selon des règles préétablies. Actuellement, le système traite automatiquement environ 20% des demandes alors que les autres sont dirigées vers une analyse au cas par cas, ce qui génère des délais.

Ce projet consiste à aider le secteur d’affaire à répondre plus rapidement aux demandes d’approbation de médicaments d’exception. Un outil sera développé sur la base de 15 années de données recueillies par le système actuel, et visera à augmenter le nombre de demandes traitées de façon automatique. 

Étudiant.e
Directeur.e(s) de recherche
Anne-Sophie Charest
Début du projet
Titre du projet de recherche
Mesures de confidentialité pour jeux de données synthétiques
Description
Description

Il arrive souvent que le partage de données soit limité par des enjeux de confidentialité. C'est une réalité fréquente dans le domaine de la santé, étant donné la sensibilité inhérente de ce type de données. Lorsque le partage du jeu de données original est impossible, une méthode qu'on peut utiliser est de générer un jeu de données synthétique, qui contient le plus possible une information statistique similaire à celle du jeu de données original, mais qui fournit des données sur de faux individus de façon à protéger la confidentialité des répondants.

Ce projet s'intéresse à mesurer rigoureusement la protection de confidentialité offerte par un jeu de données synthétique. On se penchera attentivement sur quelques mesures proposées dans la littérature, pour comprendre leurs garanties et les différences et ressemblances entre celles-ci dans le but d'identifier la ou les mesures qui seraient les plus pertinentes pour le partage de données synthétiques. 

Étudiant.e
Directeur.e(s) de recherche
Anne-Sophie Charest
Début du projet
Titre du projet de recherche
Analyse statistique de jeux de données synthétiques satisfaisant la confidentialité différentielle
Description
Description

Il arrive souvent que le partage de données soit limité par des enjeux de confidentialité. C'est une réalité fréquente dans le domaine de la santé, étant donné la sensibilité inhérente de ce type de données. Lorsque le partage du jeu de données original est impossible, une méthode qu'on peut utiliser est de générer un jeu de données synthétiques, qui contient le plus possible une information statistique similaire à celle du jeu de données original, mais qui fournit des données sur de faux individus de façon à protéger la confidentialité des répondants. Une façon de garantir que ces données synthétiques protègent effectivement les répondants, c'est d'utiliser la confidentialité différentielle, une mesure rigoureuse du risque de divulgation d'information confidentielle. 
Ce projet s'intéresse à comment analyser ces jeux de données synthétiques pour obtenir des résultats statistiques valides, les méthodes classiques d'inférence devant être modifiées pour tenir compte de la variabilité additionnelle ajoutée par la génération du jeu de données synthétiques. 
 

Étudiant.e
Directeur.e(s) de recherche
Catherine Régis
Anne Debet
Début du projet
Titre du projet de recherche
Encadrement juridique des données de santé et des mécanismes de responsabilité médicale associés, dans le cadre du développement de l’intelligence artificielle : perspectives comparées européennes et nord-américaines
Description
Description

Le projet de recherche s’intéresse à l’adaptabilité des règles, principes et dispositifs juridiques encadrant les données de santé, y compris ceux régulant les mécanismes de responsabilité médicale associée, au Canada et en Union européenne.

Il vise à en identifier les faiblesses, et aspire à apporter des solutions de régulation plus adaptées aux réalités de l’intelligence artificielle et conciliant mieux les intérêts privés et publics, individuels, sociaux, commerciaux et sanitaires en jeu. Il permet également de réfléchir à une perception différente du droit étatique et de nos systèmes actuels, aujourd’hui sans réponse satisfaisante.
 

Étudiant.e
Directeur.e(s) de recherche
Anne-Sophie Charest
Début du projet
Titre du projet de recherche
Mesures de confidentialité pour jeux de données synthétiques
Description
Description

Il arrive souvent que le partage de données soit limité par des enjeux de confidentialité. C'est une réalité fréquente dans le domaine de la santé, étant donné la sensibilité inhérente de ce type de données.

Lorsque le partage du jeu de données original est impossible, une méthode qu'on peut utiliser est de générer un jeu de données synthétique, qui contient le plus possible une information statistique similaire à celle du jeu de données original, mais qui fournit des données sur de faux individus de façon à protéger la confidentialité des répondants. Ce projet s'intéresse à mesurer rigoureusement la protection de confidentialité offerte par un jeu de données synthétique. On se penchera attentivement sur quelques mesures proposées dans la littérature, pour comprendre leurs garanties et les différences et ressemblances entre celles-ci dans le but d'identifier la ou les mesures qui seraient les plus pertinentes pour le partage de données synthétiques. 

Étudiant.e
Directeur.e(s) de recherche
Philippe Després
Début du projet
Titre du projet de recherche
Dosimétrie personnalisée en tomodensitométrie
Description
Description

Ce projet de recherche vise à développer un outil capable de générer automatiquement des segmentations d’organes d’intérêt sur des images tomodensitométriques, à partir de techniques d’apprentissage automatique (machine learning).

Cet outil sera par la suite utilisé pour calculer des doses à l’organe, afin de constituer des dossiers dosimétriques personnalisés en imagerie diagnostique. Les doses seront calculées à partir d’informations tirées des images, de la technique radiographique utilisée et d’un code Monte Carlo rapide (GPUMCD) propulsé par des processeurs graphiques (GPU). Des pipelines automatisés seront mis en place pour traiter de grandes quantités de données.

À terme, ce projet permettra de connaître plus précisément l’exposition de la population au rayonnement ionisant due aux procédures d’imagerie médicale.

Étudiant.e
Directeur.e(s) de recherche
John Kildea
Début du projet
Titre du projet de recherche
Détermination de la signature mutationnelle des rayonnements ionisants par séquençage monocellulaire
Description
Description

Ce projet de recherche vise à examiner la signature mutationnelle des rayonnements ionisants à l'aide de techniques de séquençage monocellulaire.

Le projet utilise des cellules lymphoblastoïdes humaines données par le trio ashkénaze qui ont un génome bien caractérisé. Les cellules sont irradiées et séquencées pour déterminer les mutations induites à la suite de l'exposition aux rayonnements ionisants. 
Grâce à l'analyse biostatistique des données génomiques humaines ainsi obtenues, nous pourrons identifier la signature mutationnelle des rayonnements ionisants.
 

Étudiant.e
Directeur.e(s) de recherche
Philippe Després
Début du projet
Titre du projet de recherche
Pipelines d'extraction automatiques en imagerie médicale
Description
Description

L’objectif de ce projet est d’extraire un ensemble de données pertinentes à partir des fichiers produits par les appareils d'imagerie médicale.

Le procédé consiste à bâtir des pipelines ETL (extract-transform-load) pour rendre les données consommables pour l'analyse et la visualisation.  Un exemple d’analyse consiste à observer les tendances de doses administrées aux patients selon l'établissement, le protocole ou l'appareil utilisé, afin d'éventuellement identifier des pratiques hors-normes.

Les données extraites pourraient aussi guider la pratique en permettant d'évaluer la pertinence de certains examens, et ainsi d'optimiser les ressources dans le réseau de la santé.  

 

Étudiant.e
Directeur.e(s) de recherche
Louis Archambault
Début du projet
Titre du projet de recherche
Rôle de l’apprentissage automatique dans l’orientation de la radiothérapie du cancer de la prostate guidée par l’imagerie par résonance magnétique
Description
Description

Le fardeau clinique et économique du cancer de la prostate continue d’augmenter au Canada. Selon la Société Canadienne du cancer, un Canadien sur sept développera un cancer de la prostate au cours de sa vie et un Canadien sur 27 mourra des suites de cette maladie. Il est important d’effectuer un examen clinique fiable qui permet d’avoir une différenciation entre les cancers agressifs cliniquement significatifs et non significatifs pour éviter les traitements excessifs. Les analyses comparatives avec l’imagerie par ultrasons, montrent que les modalités avancées de l’imagerie par résonance magnétique (IRM) se caractérisent par une meilleure précision diagnostique et sont devenues l’examen clinique de routine pour les patients ayant un risque de cancer de la prostate cliniquement significatif. Ces modalités offrent des capacités d’analyse importantes, mais leur application dans le cancer de la prostate a des limites distinctes (variabilité inter-observateurs, expérience de l’observateur, etc) malgré l’arrivée de la version V2 de PI-RADS.

Ainsi nous avons élaboré ce projet pour développer une approche de prédiction et de segmentation des lésions intra-prostatiques basée sur l'apprentissage automatique afin de mieux orienter la radiothérapie.

Pour atteindre cet objectif, nous avons eu recours à deux modalités améliorées d'IRM conventionnelle, la DTI-IRM et la DWI-IRM, associées à des modalités d’IRM anatomiques. Nous allons extraire à partir des modalités quantitatives les cartes qui fournissent les caractéristiques spécifiques de la lésion. Nous allons ensuite extraire l’information de la texture des modalités d’IRM et des cartes sélectionnées. En dernière étape, des méthodes d’apprentissage automatique seront appliquées pour la sélection et la classification de ces caractéristiques.

En appliquant ces méthodes l’extension et le type du cancer seront identifiés.

Découvrir

Projet en vedette

Les traitements de radiothérapie habituels répandus dans le domaine clinique ne font pas souvent l’objet de changements, se résumant généralement à un traitement global de 50 grays, fractionné en cinq traitements de deux grays par semaine durant cinq semaines.

Lire plus