Le fardeau clinique et économique du cancer de la prostate continue d’augmenter au Canada. Selon la Société Canadienne du cancer, un Canadien sur sept développera un cancer de la prostate au cours de sa vie et un Canadien sur 27 mourra des suites de cette maladie. Il est important d’effectuer un examen clinique fiable qui permet d’avoir une différenciation entre les cancers agressifs cliniquement significatifs et non significatifs pour éviter les traitements excessifs. Les analyses comparatives avec l’imagerie par ultrasons, montrent que les modalités avancées de l’imagerie par résonance magnétique (IRM) se caractérisent par une meilleure précision diagnostique et sont devenues l’examen clinique de routine pour les patients ayant un risque de cancer de la prostate cliniquement significatif. Ces modalités offrent des capacités d’analyse importantes, mais leur application dans le cancer de la prostate a des limites distinctes (variabilité inter-observateurs, expérience de l’observateur, etc) malgré l’arrivée de la version V2 de PI-RADS.
Ainsi nous avons élaboré ce projet pour développer une approche de prédiction et de segmentation des lésions intra-prostatiques basée sur l'apprentissage automatique afin de mieux orienter la radiothérapie.
Pour atteindre cet objectif, nous avons eu recours à deux modalités améliorées d'IRM conventionnelle, la DTI-IRM et la DWI-IRM, associées à des modalités d’IRM anatomiques. Nous allons extraire à partir des modalités quantitatives les cartes qui fournissent les caractéristiques spécifiques de la lésion. Nous allons ensuite extraire l’information de la texture des modalités d’IRM et des cartes sélectionnées. En dernière étape, des méthodes d’apprentissage automatique seront appliquées pour la sélection et la classification de ces caractéristiques.
En appliquant ces méthodes l’extension et le type du cancer seront identifiés.