L'équipe DEEP_UL a terminé au 3e rang de la compétition DL Sparse View CT challenge organisée par l'American Association of Physicists in Medicine (AAPM). Ce défi numérique consistait à utiliser l'apprentissage profond (ou autre méthode axée sur les données) pour reconstruire des images tomodensitométriques à partir des données brutes. La délégation lavalloise, composée de Cédric Bélanger, Daniel Gourdeau, Maxence Larose et Leonardo Di Schiavi Trotta, a su mettre à profit différentes expertises pour relever avec brio ce défi: calcul informatique de pointe sur GPU, théorie de la formation de l'image et apprentissage automatique. Ces étudiants, supervisés par les professeurs Louis Archambault, Luc Beaulieu, Philippe Després et Simon Duchesne, sont rattachés au programme FONCER en Science des données responsable dans le domaine de la santé, au Centre de recherche sur le cancer, au Centre de recherche en données massives, au Centre CERVO et à l'Institut intelligence et données de l'Université Laval. Leurs travaux sont financés par le Conseil de recherches en sciences naturelles et en génie du Canada (
Bannière

Une équipe de l'Université Laval s'illustre dans un défi numérique en imagerie médicale
Publié le 01 juin 2021
Nouvelles
Découvrir

Projet en vedette
La prédiction et l'identification précoce d'accidents vasculaires cérébraux (AVC) sont cruciales afin de prévenir les revisites aux urgences et de débuter le traitement, réduisant ainsi la morbidité et la mortalité.