Directeur.e(s) de recherche
Arnaud Droit
Start date
Title of the research project
Development of deep learning algorithms for clinical diagnosis using mass spectrometry data

The first objective of the project is to design efficient convolutional network classification models (CNNs) using mass spectrometry data (1D and 2D) for clinical diagnosis (cancer and infection).

Once finalized, the second objective is the interpretation of these classification models in order to identify spectral regions of interest that may correspond to new diagnosis or therapeutic biomarkers.


Featured project

The project consists in determining and exploring the possibilities offered by dynamic dashboards in a medical context as well as the associated data management structures. The project therefore considers several aspects of data management. In this sense, the considerations related to DICOM data transfers as well as different approaches to their management and conservation are considered. In addition, the dashboards will be designed to ensure an effective, clear and concise presentation with recognized visualization tools.

Read more