Ongoing projects

Student
Directeur.e(s) de recherche
Philippe Després
Start date
Title of the research project
Robust data pipelines in radiation oncology
Description
Description

This project consists of establishing good practices in health data management and building a software infrastructure in order to apply them.

We have developed pipelines that allow daily recovery of brachytherapy treatment data in order to calculate and store their dosimetric indices in a database dedicated to research. These indices are essential for planning radiotherapy treatments and for estimating their quality.

The aggregation of these indices allows different researchers such as bio-statisticians and radiation oncologists to carry out studies on larger data sets.

Directeur.e(s) de recherche
Philippe Després
Pierre Francus
Start date
Title of the research project
Advanced material characterization in Computed Tomography
Description
Description

Duel-energy Computed Tomography (CT) imaging has the potential to better characterize materials. DE CT images would allow for a more accurate identification of tissues present in the human anatomy. The presence of highdensity elements (e.g. region of the shoulder, posterior fossa, metallic inserts, etc.) in the scanned subject causes deterioration of the CT image quality (e.g. beam-hardening artifacts). The polychromatic nature of the X-ray beam used in CT scanners is the origin of some image artifacts. In this work, we propose a physics-rich polychromatic projection model that uses the spectrum information, the detector response, the filter geometry and a calibration curve. This model is embedded in an iterative reconstruction algorithm, and inherently reduces beam-hardening artifacts. With dual-energy acquisitions, one can reconstruct quantitative images, with effective atomic number, and electron density information. Besides that, various reconstructions techniques are explored, so high-quality images can be obtained with less artifacts, ultimately, improving the characterization and identification of elements in the image.

Directeur.e(s) de recherche
Arnaud Droit
Start date
Title of the research project
Development of deep learning algorithms for clinical diagnosis using mass spectrometry data
Description
Description

The first objective of the project is to design efficient convolutional network classification models (CNNs) using mass spectrometry data (1D and 2D) for clinical diagnosis (cancer and infection).

Once finalized, the second objective is the interpretation of these classification models in order to identify spectral regions of interest that may correspond to new diagnosis or therapeutic biomarkers.

Directeur.e(s) de recherche
Louis Archambault
Start date
Title of the research project
Geometry-based quality control for external radiation therapy planning using stochastic frontier analysis
Description
Description

This project focuses on the use of machine learning techniques in external radiotherapy for cancer treatment planning.
Stochastic frontier analysis is a parametric approach used in econometrics and appropriated for medical physics. Using a retrospective bank of treated patients it will be possible to predict the optimal dose of radiation for tumor and healthy organs.
This method is applied to multiple cancer treatment sites which emerge new challenge in the context of prediction, and data processing.

Discover

Featured project

Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer death among men. To improve patient outcomes, treatment must be personalized based on accurate prognosis. Nomograms already exist to identify patients at low risk for recurrence based on preoperative clinical information, but these tools do not use patients’ medical images.

Read more