Student
Directeur.e(s) de recherche
Jacques Corbeil
Co-researcher
Cécile Capponi
Start date
Title of the research project
Multi-view supervised machine learning for solving multi-omics problems
Description

Supervised classification allows to build predictive models based on complex data to help human decision making processes. It has undergone an impressive development in recent years, particularly thanks to neural networks and the use of big data. However, these methods are not relevant to use on databases in which only a few instances are available to build the model, and even less when these instances are described by a large number of features. This type of problem, called fat data, is recurrent in the medical field, in which the extraction of data on patients is costly, but provides a large amount of information for each one. Moreover, in the medical field, it is common to perfrom several types of analysis on the same patient : genomic, metabolomic, transcriptomic, etc. This type of database is called multi-omics.

The goal of this project is to use and develop multi-view classification algorithms relevant to the processing of multi-omic fat data

Discover

Featured project

Delirium is a condition that, when left unmanaged, is associated with increased mortality and longer hospitalization of patients in intensive care; therefore, its detection should be an integral part of care. It is characterized by confusion, anxiety and reduced alertness. It is estimated that 75% of delirium cases are not detected on admission to hospital. Detecting such an acute condition requires frequent monitoring of participants, which is labor intensive and requires expertise.

Read more