Bannière

Librairie

La confidentialité différentielle pour protéger les renseignements personnels

Présenté par

Institut intelligence et données

En ligne

Conférences midi

Conférencière : Anne-Sophie Charest (Université Laval) 


La confidentialité différentielle a pour but de permettre l’analyse statistique d’un jeu de données sans révéler les informations personnelles des participants. Pour ce faire, elle mesure formellement l’impact pour un individu d’accepter de faire partie d’un jeu de données à partir duquel seront publiées certaines statistiques. C’est une approche qui gagne en popularité tant chez les chercheurs qu’en pratique, et qui sera d’ailleurs utilisée par le Census Bureau pour la publication des données du recensement américain de 2020.

La professeure Anne-Sophie Charest vous propose ici une introduction peu technique à la confidentialité différentielle, mettant l’accent sur l’interprétation de la mesure et les outils nécessaires à sa mise en œuvre dans différents contextes
 

Découvrir

Projet en vedette

Ce projet de recherche vise à développer un outil capable de générer automatiquement des segmentations d’organes d’intérêt sur des images tomodensitométriques, à partir de techniques d’apprentissage automatique (machine learning).

Lire plus