Projets en cours

Étudiant.e
Directeur.e(s) de recherche
Philippe Després
Début du projet
Titre du projet de recherche
Tableaux de bord dynamiques pour l’évaluation de la pertinence clinique d’examens d’imagerie médicale - Optimisation opérationnelle
Description
Description

Le projet consiste à déterminer et explorer les possibilités offertes par les tableaux de bord dynamiques dans un contexte médical ainsi que les structures de gestion de données associées. Ce projet considère donc plusieurs aspects de la gestion de données. En ce sens, les considérations liées aux transferts de données DICOM ainsi que différentes approches de gestion et de conservation de ces dernières sont considérées. De plus, les tableaux de bords seront conçus pour assurer une présentation efficace, claire et concise par des outils de visualisation reconnus. Différents ajouts seront effectués sur les différentes portions du projet lors de sa réalisation selon la direction prise par la recherche ainsi que les besoins des professionnels de la santé. Une emphase particulière est attribuée au respect des principes FAIR sur l’ensemble du système résultant.

Directeur.e(s) de recherche
Simon Duchesne
Nicolas Doyon
Début du projet
Titre du projet de recherche
Effet de l'état de la vascularité cérébrale sur le développement de la maladie d’Alzheimer.
Description
Description

De plus en plus d’évidences démontrent l’existence d’un lien entre la présence de pathologies vasculaires cérébrales et l’augmentation du risque de développement de troubles neurocognitifs majeurs, telle que la maladie d’Alzheimer (MA). 
Dans ce contexte, ce travail consistera essentiellement à développer des outils d’analyse de la morphométrie vasculaire, soit la caractérisation des artères et des veines. En effet, la mesure des vaisseaux sanguins (diamètre, densité, etc.) dans toutes les régions cérébrales permettra de mieux comprendre la trajectoire de la santé vasculaire au cours du vieillissement et si cette trajectoire est reliée à deux marqueurs importants, corrélés avec les troubles neurocognitifs, soit l’atrophie du tissue cérébral, et les lésions cérébrovasculaires (principalement la présence d’hyperintensités dans la matière blanche et de micro-saignements). La vasculature de participants cognitivement sains, avec un trouble cognitif léger ou avec un diagnostic de MA sera caractérisé afin de mettre en lumière les liens entre la santé vasculaire et la santé cognitive. 
Pour conclure, le travail proposé est donc une exploration de la relation entre la vascularisation cérébrale et la MA dans le but de mieux comprendre les interactions entre les deux et aider au dépistage de cette maladie.
 

Étudiant.e
Directeur.e(s) de recherche
Philippe Després
Début du projet
Titre du projet de recherche
Un estimateur automatisé de dose à l'organe en radiologie diagnostique
Description
Description

En radiologie diagnostique, l'utilisation des rayonnements ionisants se justifie par des avantages supérieurs aux risques. D'un point de vue épidémiologique, cet équilibre est difficile à évaluer car des valeurs de dose précises pour les individus ne sont pas disponibles. Ce projet consiste à développer des outils pour rapporter automatiquement la dose aux organes à partir d'images de tomodensitométrie (CT). Tout d'abord, un outil de segmentation multiclasse basé sur l'apprentissage automatique sera développé pour effectuer automatiquement le contour des organes dans les études d'imagerie par tomodensitométrie. Ensuite, un code Monte Carlo rapide basé sur GPU sera utilisé pour calculer des cartes de dose à partir des magasins de paramètres de numérisation techniques dans les en-têtes DICOM des images médicales. Une large base de données de valeurs dose-organe sera constituée ainsi que des tableaux de bord interactifs pour explorer l'usage des doses en fonction du site exploré, de l'appareil utilisé, etc.

A terme, cette base de données sera couplée aux données épidémiologiques sur le cancer pour évaluer relations causales potentielles.

Étudiant.e
Directeur.e(s) de recherche
Anne-Sophie Charest
Philippe Després
Début du projet
Titre du projet de recherche
Analyses complexes avec DataSHIELD pour la protection de données de santé
Description
Description

Il est souvent difficile de partager des données dénominalisées entre différentes organisations et chercheurs en raison de contraintes éthiques liées à la confidentialité des répondants. C'est une réalité fréquente dans le domaine de la santé, étant donné la sensibilité inhérente de ce type de données. Une option dans ce cas est de ne pas partager directement les données, mais plutôt de donner accès à celles-ci via un outil qui contrôle le risque de divulgation des requêtes effectuées et permet seulement celles qu'il considère sécuritaires. DataSHIELD est un tel outil qui a été proposé pour protéger la confidentialité d'un jeu de données, et qui s'utilise via le logiciel statistique R. Il permet en outre de faire des analyses statistiques sur plusieurs jeux de données hébergés à des endroits différents, toujours en assurant la confidentialité des répondants. Dans ce projet, on s'intéresse aux garanties de confidentialité fournies par le logiciel, et aux limites de celui-ci. On étudie en particulier les possibilités d'analyses statistiques plus poussées pouvant être faites avec le logiciel, notamment par l'utilisation de méta-analyses et de réseaux de neurones.

Étudiant.e
Directeur.e(s) de recherche
Philippe Després
Anne-Sophie Charest
Début du projet
Titre du projet de recherche
Possibilités et limites de DataSHIELD pour la protection de données de santé
Description
Description

Il est souvent difficile de partager des données dénominalisées entre différentes organisations et chercheurs en raison de contraintes éthiques liées à la confidentialité des répondants. C'est une réalité fréquente dans le domaine de la santé, étant donné la sensibilité inhérente de ce type de données. Une option dans ce cas est de ne pas partager directement les données, mais plutôt de donner accès à celles-ci via un outil qui contrôle le risque de divulgation des requêtes effectuées et permet seulement celles qu'il considère sécuritaires. DataSHIELD est un tel outil qui a été proposé pour protéger la confidentialité d'un jeu de données, et qui s'utilise via le logiciel statistique R. Il permet en outre de faire des analyses statistiques sur plusieurs jeux de données hébergés à des endroits différents, toujours en assurant la confidentialité des répondants.

Dans ce projet, on s'intéresse aux garanties de confidentialité fournies par le logiciel, et aux limites de celui-ci.

On souhaite notamment établir des principes pour guider le choix des paramètres de contrôle de la divulgation offerts avec l'outil, et comprendre plus précisément l'impact de ces contrôles sur la qualité des statistiques descriptives, modèles linéaires et graphiques produits.

Étudiant.e
Directeur.e(s) de recherche
Louis Archambault
Michèle Desjardins
Début du projet
Titre du projet de recherche
Effet de la pression d’oxygène dans les cellules de tissus cancéreux sur les traitements de radiothérapie
Description
Description

Les traitements de radiothérapie habituels répandus dans le domaine clinique ne font pas souvent l’objet de changements, se résumant généralement à un traitement global de 50 grays, fractionné en cinq traitements de deux grays par semaine durant cinq semaines.
C’est pourquoi il est intéressant de développer un outil basé uniquement sur des modèles mathématiques tirés de la littérature, capable de comparer les différents types de traitements possibles sans avoir à les tester sur de véritables tissus. Plusieurs paramètres viennent modifier la réponse de ces tissus après leur irradiation, notamment la pression partielle d’oxygène dans les régions irradiées, le type de particules envoyées sur le tissu ainsi que la durée des traitements et le temps entre chacun d’eux.

Le code Python créé dans le cadre de ce projet vise ainsi à faciliter l’optimisation des traitements de radiothérapie en générant des graphiques montrant la survie des cellules après un certain nombre de fractions, en tenant compte de plusieurs paramètres. Le code, lorsqu’il sera complété et fera partie d’une interface graphique, sera simple d’utilisation et servira aux projets de recherche qui seront en cours.

Étudiant.e
Directeur.e(s) de recherche
Martin Vallières
Début du projet
Titre du projet de recherche
Évaluation systématique de la robustesse et du potentiel d'exploitation des caractéristiques radiomiques en imagerie par résonance magnétique.
Description
Description

En imagerie médicale, les caractéristiques radiomiques permettent de caractériser l'hétérogénéité d'une région d'intérêt au niveau anatomique. Cette façon de quantifier l'hétérogénéité d'une région d'intérêt peut être utile, par exemple, afin d'identifier les tumeurs les plus agressives en oncologie. Pour ce faire, nous posons ici l'hypothèse que la variation des séquences d'acquisition d'imagerie par résonance magnétique (IRM) et ses différents niveaux de contraste qui en découlent permettrait d'optimiser l'analyse radiomique subséquente. 
Dans ce projet, un pipeline d'analyse d'images médicales réelles sera d'abord mis en place afin de quantifier la robustesse des caractéristiques radiomiques en fonction des variations des protocoles d'acquisition. Ensuite, un pipeline de simulation d'acquisition IRM sera développé afin d'évaluer le potentiel d'optimisation des caractéristiques radiomiques en médecine.
 

Directeur.e(s) de recherche
François Laviolette
Josée Desharnais
Début du projet
Titre du projet de recherche
Des arbres de décision parcimonieux basés sur la logique pour une interprétabilité accrue.
Description
Description

L’interprétabilité de l’intelligence artificielle, c’est-à-dire la capacité d’un-e expert-e de comprendre pourquoi une décision a été rendue, est particulièrement importante dans les contextes d’analyse en santé. D’abord, car il est primordial de savoir pourquoi une décision est prise par un algorithme lorsque celle-ci a un impact sur la santé d’une personne. Ensuite, en recherche, ces types d’algorithmes sont très utiles, car ils dévoilent souvent des pistes d’investigations nouvelles. 

L’objectif de cette étude est de combiner deux algorithmes d’apprentissage automatique supervisé dans le but d’en améliorer autant l’interprétabilité que la performance, notamment grâce aux outils de la logique mathématique. Le but de cette variante algorithmique est d’aider à une meilleure prédiction en augmentant légèrement la complexité du modèle tout en conservant ce haut niveau d’interprétabilité. 

Cet algorithme est développé dans le but d’analyser des données larges (fat data), c’est-à-dire les données qui comportent beaucoup de caractéristiques (attributs), mais dont nous avons peu d’échantillons (observations). Ce type de données est très présent dans les données liées à la santé, notamment dans les cas de données génomiques, métagénomiques et métabolomiques qui sont l’état de l’art des analyses médicales. Plus précisément, nous nous intéressons aux problématiques de la résistance bactérienne aux antibiotiques et de la maladie à coronavirus (COVID-19) longue. 
 

Étudiant.e
Directeur.e(s) de recherche
John Kildea
Début du projet
Titre du projet de recherche
PARTAGE - Étudier le partage de données géré par le patient pour générer des résultats à partir de données concrètes à l'aide du portail patient Opal
Description
Description

Le projet PARTAGE (Évidences Générées en Partenariat Patients-Chercheurs) est un projet de recherche explorant les mécanismes qui permettront aux patients de partager en toute sécurité leurs données cliniques avec les chercheurs via le portail patient Opal. Dans le cadre global du projet PARTAGE, ce sous-projet spécifique vise à recueillir les commentaires des parties prenantes sur le concept de partage de données. Pour ce faire, nous utilisons un processus de co-conception des parties prenantes dans lequel les patients, les cliniciens et les chercheurs sont intégrés à l'équipe de recherche. Des commentaires supplémentaires de chaque parties prenantes sont obtenus par le biais de groupes de discussion et d'enquêtes.

Étudiant.e
Directeur.e(s) de recherche
Anne-Sophie Charest
François Laviolette
Début du projet
Titre du projet de recherche
Création d'un jeu de données synthétique pour des données de santé
Description
Description

Il est souvent difficile de partager des données dénominalisées entre différentes organisations et chercheurs en raison de contraintes éthiques liées à la confidentialité des répondants. Il peut ainsi s’écouler de longs mois, parfois même des années, entre la rédaction d’un projet de recherche et le début de l’analyse planifiée, ce qui limite la capacité des chercheurs à mener des travaux scientifiques de pointe au moment opportun et contribue à allonger inutilement la formation d’étudiants gradués, entre autres problèmes. Une solution possible est de créer un jeu de données synthétiques à partager aux chercheurs en attente de l’accès au jeu de données original. Ce jeu de données synthétique serait représentatif des données originales, mais créé de façon à ne pas révéler d’information confidentielle sur les répondants. Il permettrait aux chercheurs de se familiariser à l’avance avec les variables mesurées, d’anticiper les difficultés techniques du projet de recherche (stockage, logiciels, gestion des accès), et de planifier de meilleurs protocoles de recherche.

Nous étudions ici les enjeux techniques liés à la création de tels jeux de données synthétiques dans le domaine de la santé. Il faut notamment s’assurer que les modèles statistiques utilisés soient assez flexibles pour bien modéliser les corrélations entre les variables collectées, tout en s’assurant de ne pas sur-ajuster ceux-ci, ce qui pourrait nuire à la protection de la confidentialité. Le travail s’articulera autour de la création d’un jeu synthétique pour un sous-ensemble des données collectées par le Consortium d’identification précoce de la maladie d’Alzheimer - Québec (CIMA-Q), pour qui le partage des données à la communauté de recherche sur la maladie d’Alzheimer canadienne et internationale est un objectif important.
 

Découvrir

Projet en vedette

Le projet vise à étudier les effets sur le débat public de l'intelligence artificielle (IA) et de la science des données, et de leurs usages par les nouveaux diffuseurs de contenu sur le web. 

Lire plus