Étudiant.e
Directeur.e(s) de recherche
Louis Archambault
Simon Duchesne
Début du projet
Titre du projet de recherche
Synthèse hétéro-modale d'images médicales par apprentissage profond
Description

Ce projet de doctorat s'intéresse à la synthèse d'images médicales par l'apprentissage profond, à des fins de correction d'artefacts et d'éviter l'injection d'agents radioactifs ou de contraste.

Les réseaux utilisés possèdent une architecture flexible permettant la synthèse d'image à partir d'un ensemble hétérogène de modalités d'entrée. Les images sont synthétisées dans un cadre pathologique, comme la maladie d'Alzheimer et les cancers du cerveau.

Découvrir

Projet en vedette

Le cancer de la prostate est le deuxième cancer le plus fréquent et la cinquième cause de décès par cancer chez les hommes. Pour améliorer les résultats de santé des patients, le traitement doit être personnalisé en se basant sur un pronostic précis. Il existe déjà des nomogrammes permettant d’identifier les patients à faible risque de récidive sur la base d’informations cliniques préopératoires, mais ces outils n’utilisent pas les images médicales des patients.

Lire plus