Directeur.e(s) de recherche
Jacques Corbeil
Pascal Germain
Elsa Rousseau
Début du projet
Titre du projet de recherche
Développement d’une technologie de contrôle de la qualité des plantes en cours du procédé manufacturier de médicaments en utilisant la spectrométrie de masse à haut débit couplée à des approches en apprentissage automatique
Description

L'efficacité et la robustesse du procédé manufacturier sont essentielles pour assurer la productivité et la prévisibilité dans la fabrication pharmaceutique. La technologie de fabrication de vaccins de Medicago utilise des plantes pour la production et notre objectif est de développer un système capable de prévoir et de contrôler l’aptitude des plantes à la production, et ce, tôt dans le processus, de l’ensemencement à la récolte des feuilles productrices.

À cette fin, nous devons identifier les facteurs qui régulent le niveau de production de chaque plante. Nous prévoyons mesurer un grand nombre de molécules, appelées métabolites, afin de déterminer les conditions optimales permettant à la plante de générer la quantité maximale de chaque produit. La quantité de mesures étant importante, nous utiliserons l’apprentissage automatique pour concevoir une intelligence artificielle capable de comprendre et d’identifier les schémas potentiellement très complexes de métabolites et/ou des caractéristiques corrélées à une productivité optimale.

Découvrir

Projet en vedette

Ce projet de recherche se base sur l’analyse de données massives portant sur l’index NOL et d’autres paramètres cliniques intraopératoires utilisés par les anesthésistes durant une chirurgie. Ces paramètres les aident à prendre des décisions de traitements analgésiques chez un patient non-communiquant sous anesthésie générale et chez qui il est impossible d’évaluer la douleur et les besoins en analgésiques par les questionnaires habituels réalisés sur patients éveillés.

Lire plus