Le traitement du cancer par la radiation est une technique éprouvée et utilisée partout dans le monde. Une des façons de traiter le cancer de la prostate est l’utilisation de la curiethérapie soit seul ou en boost. En ce moment, les techniques utilisées dépendent de l’expérience de l’équipe traitante et des chercheurs tentent de pallier ce problème.
Dans notre cas, la technologie envisagée pour répondre à ce problème est l’apprentissage profond. Le but du projet est donc d’utiliser l'apprentissage profond afin de développer des outils pour la planification en curiethérapie à haut débit de dose du cancer de la prostate.
Quatre phases différentes sont initialement visées. La première consiste en une classification des plans de traitements utilisés. Le second est une approche de ''reinforce learning'' afin d'aider à l'optimisation des plans de traitements, soit en modifiant les objectifs d'optimisation afin de considérer de façon unique chaque patient. Le troisième est la prédiction de carte de dose basée sur l'anatomie des patients. Le quatrième est la génération de plans de traitements; à partir de l'anatomie du patient ou d'une carte de dose pour trouver un plan de traitement adéquat.
Le travail proposé est une nouvelle approche qui permettra, ultimement, d’aider aux traitements de curiethérapie à haut débit de dose pour le cancer de la prostate.
Titre du projet de recherche
Développement d'outils de planification automatique en curiethérapie à haut débit de dose pour le cancer de la prostate
Description